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FOREWORD

The author wishes to thank Dr. David L. MacAdam, Editor of the
Journal of the Optical Society of America, for granting permission to
publish six graphs and two tables that appeared in the journal. The six
graphs were presented by E. S. Lamar, S. Hecht, C. D. Hendley and
S. Shlaer in their report, "Size, Shape and Contrast in Detection of
Targets by Daylight Vision I[. Data and Analytical Description.” The

two tables were taken from S. Q. Duntley's report, "The Reduction of
Apparent Contrast by the Atmosphere."



ABSTRACT

Determining the requirements of helicopter lghting requires sclecting the
major factors that contribute to the lighting power of a surface light source.
Since the light source must be functional, sky brightness, atmosphervic attenua -
tion, and other characteristics of light sources such as size, shape and angular
velocity must be studied. This report presents a model that looks at cach of
these variables separately. More investigation is needed in the ficld of scarch
time to improve the reliability of the model for given background luminances.

The necessary light output for an arca light source can be determined by
methods described; in addition the required boundary range for a surface light
source can be computed for almost all conditions.
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VISUAL DETECTION OF ILLUMINATED SURFACES 1

INTRODUCTION

This study was initiated in response to the expressed need for better formation
flight lighting for U. S. Army helicopters. Electroluminescent (EL) panels and rotor tip
lights were under active consideration as potential improvements over the navigation/
position lights currently used in formation, Studies by the U. S. Army Electronics
Command Avionics Laboratory and the U. S. Army Limited War Laboratory indicated
interest in electroluminescent panel lights and both incandescent and self-luminous
rotor tip lights.

To guarantee signal characteristics under a wide range of operational condi-
tions, it was necessary to study a large number of functional relationships. These
would permit prediction of lighting requirements based on the following variables:

a. Geometry of the target in respect to the observer.

b. Atmospheric attenuation and scattering.

c. Uniform and non-uniform background luminance.

d. Exposure time of target to the observer in the field.

e. Size of target.

f. Shape of target.

g. Angular velocity (minutes per second) of target source in the field.

Throughout this report, it will be assumed that altitude, velocity and terrain
are constant for any given problem.

I This study was part of a program funded by Avionics Laboratory, U. S. Army
Electronics Command, Fort Monmouth, New Jersey.



CONSIDERATION OF VISUAL TARGET AREA

Threshold levels for visual detection of light sources were provided by Hardy (6)
for targets subtending given minutes of visual arc and given background luminance
conditions. Data used here were abstracted from the World War II visibility studies
carried out by the Tiffany Foundation under a contract with the Office of Scientific
Research and Development and reported in Hardy's July 1963 report titled, "Visibility
Data and the Use of Optical ‘Aids” (Table 1).

TABLE 1

Some of the Liminal Contrast of Circular Targets by Hardy

Angular
Subtense
of Target Limipng] Contrast (Foot-Lamberts)

(Min.) 1,000 100 10 1 10!l 102 103 0% 107
20.43 .00335 .00335 .00357 .00498 .0113 0414 211 .676 2.27
7.430 .00562 .00605 .00787 0126 .0309 . 133 .995 4,20 16.1
6.290 .00667 .00745 .0100 .0166 .0413 0.175 1.38 5.82 22.6
1.988 .0444 .0566 .0838 .150 .376 1.61 13.6 58.3 225.
1.360 0.0881 0.116 0.175 0.312 0.785 3.45 29.0 125. 480.
1.292 0.0966 0.128 0.193 0.345 0.868 3.82 32.2 138. 535.
0.8170 0,225 0.306 0.466 0.841 2.14 9.44 79.4 1330.

Using Hardy's contrast thresholds for circular targets, a number of computer
calculations were performed in order to determine the light values required under
various conditions of range, shape, size, attenuation and scatter. Since Hardy's
threshold values apply only to targets subtending the same shapes and visual angles,
application of Hardy's threshold levels to other targets involves a transformation to
cquivalent shapes and sizes.

Problems in shape transformations will be discussed in the next section.
However, in general, rectangles with small length-to-width ratios such as squares,
or the 2-inch by 10-inch electroluminescent panels, can be transformed to equiva-
lent circular arcas. The curve for angular subtense of the 2 x 10-inch electrolum -
inescant panels was derived through the following calculations (Fig. 1):
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.

T = 7% (converting target area, X, in square inches to
square feet)
r =4/ X Cos .
144+ (radius in feet of an equivalent circular target to the

2 x 10 inch electroluminescent panel)

(where r = radius of cquivalent circle and d = distance
from observer)

oR
1
=3
o
=
NS o)
~———

d = (d = distance at which the electroluminescent panel will
Tan(g) subtend 8 minutes of arc)

For the case of the electroluminescent panels, 2 x 10 inches, at distances 100
feet or more, we are concerned with thresholds of less than 15 minutes of visual arc.
Hence, for visibility or detection at flight separations beyond 200 feet, we can examine
visual thresholds of surfaces subtending less than 7.2276 minutes of visual arc for the
2 x 10 inches electroluminescent panel.

r =.21026 (radius of the 2 x 10 inch electroluminescent panels x
target in feet)

6 =2 Tan"} _£_>
200
8 = 2 Tan ' (.00105131)
8 = 7.2276 minutes of arc (8 is the angle the target subtense at a distance of

200 feet)

Therefore, Hardy's contrast thresholds for less than 7.23 minutes of visual arc were
used for ranges (distances) of 200 feet or more.



SHAPE OF TARGETS AND CONTRAST REQUIREMENTS

The threshold contrasts of targets with sides in the ratios of 1:1 and 100:1 will
differ depending upon the ratios; the larger the length to width ratio, the greater the
contrast ratio required, except for surfaces subtending extremely small angles.
Blackwell's Tiffany Foundation studies done during World War II reported on this
subject. His results are illustrated in Figure 2 showing the different contrast
requirements for two targets against background luminance of 1 x 10'5 foot lamberts.
Table 2 shows the excerpted data that Blackwell experimentally produced.

Lamar (9) made the assumption that contrast is not judged over an entire target
area, but only across its boundary. Lamar worked with targets ranging from 0.5 to
800.0 square minutes in area. The following calculation is based on contrast between
the boundary of the target and the boundary of the background, where Blackwell's and
Hardy's data were used for the calculations. Lamar's data was obtained from the
records of one dozen subjects (under 30 years of age, with 20/20 vision or better).

The data used to compute luminal contrast (Al/ I.) represent accurately the threshold
levels of the human eye for different background luminances and sizes.

Useful flux is defined as the light from an area just inside the perimeter of the
target; the width of this perimeter varies according to the background luminance.
Figures 3, 4, and S show the relationship between useful flux and target perimeters
under low light level conditions.

The width of the perimeter band is determined by examining Hardy's data.
There is a critical width at which the total flux slopes upward as the area of the
target increases. This upward slope implies that as the area increases beyond
a critical width, the total light flux increases in proportion to the increase of the
added area of the target. Hence the flux contributed by points inside the critical
band will not add to the visibility of the taxrget. Since this upward slope occurs
at a fixed width depending upon the background luminance, it is reasonable to
assume that this will occur for any extended target shape. That is, the total flux
will not be totally useful beyond a critical width inside the edge of the perimeter,
and this critical width implies that detection will occur because of the contrast on
the perimeter.

These curves (Figs. 3, 4 and 5) have the same shape as those by Lamar (Fig. 6),
which impiles that Lamar's rule may hold under scotopic as well as photopic
background luminances. Examination of Figure 7 (Lamar) suggests that there
is little difference between curves for asymmetry quotients 2 and 7. For small
asymmetry the ratio of length to width is relatively unimportant, the variable of
major importance is area, not shape of target. However, for ratios above 10 or 20
the target shape becomes important, and the contrast threshold rises as the target
ratio increases.
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TABLE 2

Blackwell's Reported Data: Liminal Contrast
Ratios Associated With Shapes

Dimensions in

Minutes Liminal Background
Shape Area/Diameter Contrast (Foot -Lamberts)
, (1,734.909) s
Circle 47, .764 10
(1,751.3) ]
Square 41.5x 42.2 .804 107°
(1,760.0)
100:1 -
Rectangle 100 400 x 4. 4 1.97 107
. (1,734.909)
Circle 47. .00541 10
s (1,751.30)
quare 41.5 x 42.2 .00374 10
1,760.0)
1 (1,
Rectangle 100 400 x 4.4 .00589 10
(6.2422)
Rectangle 5:1 5.29 x 1.18 .0560 10
, (1,728.48)
Rectangle 4:1 83.1x 20.8 .00512 10
, (48.4)
Rectangle 10:1 22.0x 2.2 .0200 10
N o 100:1 (46.134)
ectangle 100: 69.9 x 660 .0454 10

Liminal Contrast Ratios

Visual Angle

(Minutes) Circle or Square 100:1 Rectangle
129.2 0.259
64.60 0.485 Adaptation Brightness
32.30 1.12 3.53 1073 foot-lamberts
18.46 2.71 7.31
10.77 7.73 15.1
7.178 17.3 27.5
4.969 36.1 48.8
3.400 77.4 89.5
3.076 94.1 107.0
2,153 192.0 200.0
1.436 432.0 432.0
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BAND WIDTH OF USEFUL FLUX AROUND SURFACE TARGET
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Fig. 6. USEFUL FLUX AND ITS RELATION TO TARGET PERIMETER,

FROM REFERENCE 9
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The concept of useful flux that Lamar presented indicates that the two quantities
which determine a target's detectability is the amount of contrast across a boundary
and the perimeter size. The formula is:

Al _ k
('I_)t = CR/ A (1)

where (C) is a constant, (R) is the perimeter of the target in minutes of arc, (Ap) is
the area of useful flux, and (k) is the constant for background which determines the
slope of the useful flux curve.

This appears to be a way of integrating some of the theoretical modifications
of Ricco's Law as applied to targets of intermediate size (Graham, Chapter 7 by
Bartlett), Ricco's Law states that the product of area and luminance is constant
for threshold (AL = k). This law holds nicely for small targets, generally targets
less than one minute and approaching point light sources in size. Ricco's Law
holds also for larger targets, up to 10 to 14 minutes in diameter, if the background
is very dark, permitting targets at threshold to be less bright. This law is consistent
with the useful flux concept in that all the flux is useful in these cases. However,
as the target becomes extended, Ricco's Law does not apply, and various modifica-
tions have been suggested. For example, Piper's equation gives an approximate
description of the situation for intermediate sizes. (The product of the square root
of area and luminance is constant, \/KL = k. However, neither Ricco's Law nor
Piper's equation will correctly describe targets which deviate from the point symmetry
of a square or circle. Lamar's formula better indicates the efficiency of the light
flux available throughout this range of targets, and can be applied as well to extended
targets or targets of assymetrical shape. Graham, Brown and Mote (Graham,
Chapter 7 by Bartlett) have developed a theory which applies to targets throughout
the range of sizes except for the very small targets, but this theory is more
complicated in application and is also limited to symmetrical targets. Lamar's
formula is easier to apply and can be extended to targets as large as 800 minutes
in area. However, it is inapplicable to targets much larger than 800 minutes in
area. The Graham, Brown and Mote theory has been extended to targets as large
as 3000 minutes squared.

Lamar's curves, Figure 8 for total flux are similar to the curves
(Figs. 9, 10, 11) which we derived from Hardy's data.

The formula implies that as (R) perimeter increases the total flux must
also increase, a conclusion that agrees with the data that has been collected; it
also implies that as the area (Al) of useful flux increases, the contrast requirements
for detection decreases.

13
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The formula for useful flux (F) is:
| 2\, (Al - ® /p -p \2 . [al
F—<TDB> (T)t ‘I(B S) T .

WiC e DB > DS

DB is the diameter of the target in minutes of arc.

DS is the diameter of the smallest area of totally useful flux.

for circular targets with (R) perimeter.

Therefore: F = _Z_ DS(ZDB - DS) . (_ATI_ >t

Al

Note that Equation 2 is merelz a restatement of Equation 1 in which useful
flux (F) has been substituted for CR™.

F = (#) . A; =crK (3)
t

We can solve for C by letting k = 0, the slope at the limit as angular length becomes
very small. Then

o

F=CR =C (4)
for targets where Dy is less taaa Dg. Since the curve approaches zero slope at the
cxtreme left, the F value can be read from the ordinate. Note that the useful flux

limit for very small target thresholds is larger for lower level backgrounds by
virtue of the increased contrast requirements against very dark backgrounds.

18



For example, the curves for different length to width ratios against a 10-3
footdambert background repeatedly intercept the useful flux curve at 10-minute
widths (Fig. 10). This appcars to be a critical limit above which the flux emitted

is no longer totally usetul. The width of the band of uscful flux for 1073 foot-lambert
background is therefore D = _129 =5 (Fig. 12).

Fig. 12. TARGET ASSUMED TO BE CIRCULAR
(Shows the area of useful flux for the case of
103 Foot - Lamberts background.)

19



I Jt

i -2 10 minutes which. from LEquation 4, permits

Usetul flux 2(_A.L) Ay = CRk. For background of 1()_3 foot-lambert, slope =k<0

F=C=46.0

it the intercept of the 1:1 curve at approximately 10 minutes length. Solving for k,
the slope above 10 minutes of arc,

A
al 1 _
log 2y . = log(R) = k
g [<12 (;] g(

By substituting Hardy's data we know all of the terms except for (C) the constant
aid (k) the slope of the curve. The two unknowns can be solved for by picking two
points on the curve and fitting the equation,

F = él) A - CrRK
4!

to the data. Since the curve has a constant slope (k), the two points picked are shown
a1 danle 3.

TABLE 3

Data Uscd to Calculate Constants k and C

(R) Useful Flux
Minutes of Arc Perimeter of Surface AlY . Al
(Subtend by Target) Contrast Ratio Square or Equivalent Circle I
t
25.84 .161 81.178752 52.724
30.75 L0607 253.6836 72.226
<AI) A. = crRX
—_— 1
I
t
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(52.724) = C (81.178752)% (a)
(72.226) = C (253. 6836)" (b)
(52.724)
721 17a7emkK
(81.178752)

substitute the value of (C) that we get from (a) into Equation (b) we get

log (1.36988) _ |
log (3.12500)

Therefore:

{ .276210002 k

15.65313285 = C
Graphs were done for 10_1, 10-3, and 10-5 foot-lamberts, using the useful

flux idea to predict level of threshold contrast for rectangular targets of 1:1, 10:1,
20:1 and 100:1 ratios (Figs. 13, 14, 15).

Comparison of Blackwell's curves (Fig. 2) for 107 foot-lamberts with Figure 15,
which was derived from Hardy's data using Lamar's useful flux method, show the
similar results for targets from 1.0 to 300.0 square minutes of arc. Hence, it appears
that the useful flux method, which Lamar demonstrated for high brightness backgrounds,
can also be applied to low brightness backgrounds involving scotopic vision. This

provides a way of applying Blackwell's and Hardy's data to illuminated surfaces having
extended or asymmetric shapes.

ATTENUATION AND SCATTER

Duntley (4) provided a mathematical model for apparent luminance of a light
source at a given slant range through the atmosphere. He assumed that in passing
through the atmosphere the transmitted radiant flux, t or s (Fig. 16) will be
diminished by absorption and scattering, and these changes, g) and (_ ds) ,

dr dr
for upward and downward, respectively, will be proportional to the flux B and q

were called the constants of proportionality. T and o were scattering -rate
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Fig. 16. ILLUSTRATING THE TWO CONSTANT THEORY
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coefficients. B was the atmospheric attenuation coefficient, and q was the spectral
radiant density 5t space light, which is the same at all points. The differential equa-

tions that relate all of these elements are:

(5) (observer looking downward)

—_ = - t
ar B+ Trq

_ds . Bs + aq (6) (observer looking upward)
dr r r

By replacing Br = ﬂof(r)

r f(r) and
0

"

ag

o f(r). where g, ;. and o are the values assumed at the
r o] o o o

lower end of the path of sight, Equations 5 and 6 become:

WR R
_dat . f(r)dr (7) (observer looking downward)
-Bt+rq
o 0
W, 0
Wo 0
——-——d§—— = - f(r)dr (8) (observer looking upward)
-8s +1 q
o o}
Wi R

where Wg and W are values of light flux as defined at R and O respectively.



In the case of a horizontal path of sight through a homogeneous atmosphere,
f(r) =1 since 8, 7, and ¢_are the same at all points. In the case of an inclined
path of sight, f(r) 791, beca%se_the air density and particles in suspension decrease
with increasing altitude. Let R be the optical slant range. Then

R

R = j f(r)dr (9)

o

Performing the integration indicated in (7):

R WR WR
R = j’ f(r)dr = j a = - —— log (-8t + T_q)
- Bot + TOq Bo
o] w w
(0] 0

5 1
R = _Bt.)_ log (-8 Wp + 7,0 + B log (-8, W, + 7,0)

i
1]

5 -

1

log (-8, W,, + 7,0 - log,(-8,Wp + roq>]

50R = [loge(' B, Wo + 750 - logo(- B, Wy + o]

BoR (-8B W, +7,9)
¢ = ° (—60WR S

8,R
e © ('AS(’)WR +Toq) = (wBOWO + TOQ)

BoR  BoR
‘5OW e = -e

R Tod " 6oWo + 74
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w -e TOq-BOWO + 7.q
R B, R
-Boe
Tq -BOR —BR
W. = _9  (1-e ) + We © (10)
R 8 0
[¢]

In a similar manner performing the integration indicated in Equation (8), we get:

: q - B R B R
= _0 1 - 9y 4 We ° (11)
WR B( ¢ 0

0

where Wp and WO are the flux as defined at R and 0 respectively.

Substituting B, inherent luminance. and BR' apparent luminance. for W and

W respectively. in Equations (10) and (11):

r q -8R -8R
Bp = (I-e¢ ) + Bye (12)
BO
-8R -8B R
r q
By = —2(L-e ° ) +Be ° (13)
[¢]

Visibility
Luminance differences are exponentially attenuated.

—BOR
(Bg; - Bry) = (Bpy - Bpyle (14)

where Bp, and By, refer to the apparent and inherent luminances of the object; and
Bro and BOZ refer to the luminances of the background. Equation (14) above is for

the horizontal case. Since target visibility is best described in terms of contrast
thresholds, the Equations (12), (13) and (14) will be uscd to determine contrast
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ratios. The contrast ratio is the ratio between the brightness of the object minus

the brightness of the background divided by the brightness of the background
(assuming the object is the brighter). Let

CO = inherent contrast

CRr = apparent contrast

Then, the contrasts are defined as:

By, - B
c =01~ Boz

(15)
0 Boz
B,, -B
1
CR < _R1_R2 (16)
Br2
Equation (14) when divided through by By, " Bry becomes
B - B R
2
Cg = —BO— Cge ° (17)
R2

The apparent luminance of the sky as seen from the ground in the vicinity of the
target is:

-8R
Toq 0 0, ™
BRZ = 30 (1-¢ ) (18)

The inherent luminance of the sky (as viewed from the region of the target) is

9
5 (19)

which can be derived from Equation (13).

-BR .
Since B,e O — 9 as R —>



Visibility Upward
Boy -8 R
Substituting Equations (18) and (19) into CR = 5 C,e yields the
R2
casc of atmospheric reduction in contrast for an observer looking upward along an
inclined path.

BR | P RR
C, =C_e ¢ - (20)
R 70 -8R
1 -e 00, o
Downward Visibility
-8 R -B R
7,4
Bg = BO (1-e ° ) +B,e
o
From observer to ground:
o4 ) Bo RO,G i 50 Ro,G
BR2=——— (1-¢ )+BOC
By
From target to ground (assuming target on ground):
-B R -8B R
_roq ) 0 0.0 + B . 00,0
802 = 3 (1 -e ) o€
0
since R =0
0,0
802 =B,
substituting into Equation (17):
BR
Byo©
“R =% |73 8 R 8 R
97 (1-e o O,G) + Byye 0o, G
0
8 R
Boze
R = Co BR BR
- e 0.G
T()(1 o Te4c 070, G + B()bOZL ©




B02 By € °
“R =% -BRo,G 48 “BoRo, G
Toq —qu o] O: + OBoze O O:
C, =C 1
R Z Z
4 "Tp4€ B(:RO,G + 13OB026 BORO»G
608026 h BO RO, G
= -1
Bo 0,G
Cp =C [1- 03 (- ) (21)
o 3B
o 02
1 B T q - .
Where ~m  _ 0 (sky-ground ratio)
By 8.Bo2
therefore Equation (21) becomes:
R -1
B Bo 0,G
= - m -
CR C0 1 30_2 (1 -e ) (22)
TABLE 4
Sky-Ground Ratio
Sky Condition Ground Condition Sky-Ground Ratio
Overcast Fresh snow 1
Overcast Desert 7
Overcast Forest 25
Clear Fresh snow 0.2
Clear Desert 1.4
Clear Forest 5
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[For the general case of downward visibility for a target not on the ground:

OBSERVER
/
/
/
7/
/
/
7/
/
/
TARGET~ 7
(N) — ————- o
/
/
/
/
/
/
/
/
7
/
4
/
/

/
(M) 77277777 777777777777 7777777777
GROUND

Fig. 17. FOR THE GENERAL CASE OF DOWNWARD VISIBILITY
FOR A TARGET NOT ON THE GROUND
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Observer to ground:

t.q - -8 R
BRz-O (l-eBO 0’M)+Boe o oM
o
Target to ground:
1ol 'BoRN,M -8, R\ M
B, = 3 (1-e )+Boe
o
C _Bo C _BoRo,N
R™Bg ©
-BR -8 R
M M
T;q (1 o o N ) + B.c o N
Cr =G > = .
-8B R -8B R
T'Oq (1_ e (6] O9M) + Boe [e] OyM
o
B
Since By = rod ; BM =  (sky-ground ratio)
B, o
g _(1-e O Ny 4 e 00
= 0
R =% B B R B
—M(le oO’M) +e 0OM
B,

Equation (23) is for the general case of downward visibility (Fig. 17). target not

on the ground.
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The two cases above, Equations (20) and (23) together, are more precise
versions of Duntley's law of contrast attenuation. These equations were derived
for the computer programs used in this study.

Horizontal Visibility

e (24)

Optical Slant Range (ﬁ)

The optical slant range, R, must be evaluated if the Equations (20), (23), and
(24) are to be used correctly. Duntley suggested a method for determining R.
The method applied the equation of state of a perfect gas to the "standard atmos-
pherc." The density of air is a function of the pressure, P, where M is the molecu-
lar weight, T is the absolute temp,?rature, R is a physical constant known as the
universal gas constant (8.314 x 10’ ergs per mole -degree) and g is the gravitational
constant. The fundamental cquation allows the calculation of pressure throughout
the atmosphere if the temperature and the molecular weight are known.

AP _ Mg Ah

P RT

where h is altitude above sea level expressed in feet. Pressure at the altitudes of
interest can be calculated by integrating the fundamental equation.

fA_P = - M__g_ Ah
P RT
log P = - -Mg n if Mg =k constant
Ee RT RT "
Therefore,
-k h
P =e¢ (25)
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which describes the standard atmosphere. The optical standard atmosphere is
represented by Table 5, which gives the relative molecules per unit volume for
each altitude.

TABLE 5

Relative Density of Air Due to Altitude

Relative Number of

Altitude in Feet Molecules Per Unit Volume

0 1.000
1.000 0.956
2.000 0.918
3.000 0.878
4.000 0.841
5.000 0.804
6.000 0.770
7.000 0.736
8.000 0.703
9.000 0.672
10.000 0.642
12.000 0.586
14.000 0.534
16.000 0.485
18.000 0.440
20.000 0.399
22.000 0.361
24.000 0.326
26.000 0.295
28.000 0.266
30.000 0.239

This relationship is described by an equation of the form (25). Using the data from
Table 5, the following equation is derived:

N -h/21, 700
. = e 26
N (26)
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where Ny is the number of molecules per unit volume at sea level, N is the number

of molecules at altitude h.

Along any slant path h =1 sin 8. Thus if f(r) = (N/Np).. a gencralized form

of Equation (9) becomes:

Ry R,
R =S f(r)dr =S e-rsin@/21,7()() dr
R, R,
integrating we get:
R2
-sinB® .
- 21,700
R = c dr
Ry
R
sin 8 2
- 1 21,700
R = _sin © €
21,700 R,
R = -21,700 csc 8 [C'Rz sin 8721, 700
_ [ -R,sin®/21,700
R = 21,700 csc®8 e

where R2 > R1

- ¢

Ry Sirle/21,700]

_R2 Sin9/21, 700] (27)

In the special case of the observer at sea level looking upward

R = 21,700 csc®
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For non-standard conditions the description of the atmosphere can be accomplished
by partitioning the volume into levels of density and attenuation.

Graphs to follow describe the brightnesses required of 20 square inch surface
lamps such as electroluminance panels (EL) for a numbcr of %‘round sky ratios and
attenuation levels, with background brightnesses of 1073 , 10 7, and 10~ S foot-lamberts
(Figs. 18, 19, 20, 21, 22, 23, 24, 25 and 26).

These curves describe 0.50 probability of detection thresholds using Lamar's
idea of useful flux and the law of attenuation and scatter from Duntley. The curves
show the relationship between foot -lamberts brightness required on the EL panel
and slant ranges, with sky-ground ratios of 5.0 and 25.0 for clear forest and over
cast forest, respectively. Slant angle is 30° with respect to the ground. The
transmissivity level is given in per mile (5280 ft.).

TIME AS A FACTOR OF INCREASING THE PROBABILITY OF DETECTION

The number of "looks" at a target which is in the visible range is important
in determining detection of light sources. We know (a) that a given light becomes
visible at a fixed distance; (b) how long the target will be in the visible range; and
(c) how its relative velocity in minutes per second limits the number of "'looks."
If the target is not detected on the first look, how long will it take to look again;
and if another "look" is taken, will the target be detected? These questions must
be answered if we are to make a realistic prediction about the probability of
detecting a light source. Change in position of the target implies that the distance
will vary, hence the probability of detection will increase or decrease with each
change in location.

The first step is to determine the time duration of target visibility.

To simplify the calculation of the interval during which the target will be
detectable, where threshold contrast levels are met from point P (x y,Z) to
P2( X,y,z), it is assumed that the target is moving in a straight path at constant
velocity and constant altitude (Fig. 27). Once we know the duration of time that
the target will be detectable, we must estimate how often a person will look.
Hence. how long is a "look" or, more precisely, a search cycle of the field?

Graham and Kemp (5) analyzed brightness discrimination as influenced by

the duration of AI. For any given background brightness the product of threshold
contrast and exposure timef(A I/I) . t] was constant below a critical
t

37



in FOOT LAMBERTS

THRESHOLD

10' I}
T:=.044
/g T2
/
(+]
i0° 1+ /‘ T=.044
// T=.53
/4 T=.2l
BACKGROUND BRIGHTNESS / , T=.73
10°® FOOT LAMBERTS /& p s
/ =.53
LOOKING DOWNWARD POSITION 7-.88
T=.73
-1
o T-.88
107 1 +
107> 1 b
8
6
4+
2k
10741 L Lo o4 aaany . . .
2 3 456789 I \ ‘
io* 10' Toh 0° 10*
DISTANCE in FEET
Fig. 18. RELATION BETWEEN THRESHOLD REQUIREMENTS FOR

EL-PANEL (SLANT RANGE) AND

38

DISTANCE



FOOT LAMBERTS

THRESHOLD in

10' 1

10° 1

10

107

LR R RRRI

N
L i

T=.044
BACKGROUND BRIGHTNESS = .2l
107 FOOT LAMBERTS = .53

HORIZONTAL POSITION

i i 1

|
10° o' 10 10*

DISTANCE in FEET

. 19. RELATION BETWEEN THRESHOLD REQUIREMENTS FOR

EL-PANEL (SLANT RANGE) AND DISTANCE

39



THRESHOLD in FOOT LAMBERTS

107%

j07?

T

T=.044

BACKGROUND BRIGHTNESS

|10 FOOT LAMBERTS T=.21
T=.53
7= 73

LOOKING UPWARD POSITION 1 88

T Vv r rvriy

1 1 i
| { I
i0° 10’ 10 10

DISTANCE in FEET

Fig. 20. RELATION BETWEEN THRESHOLD REQUIREMENTS FOR

EL-PANEL (SLANT RANGE) AND DISTANCE

40



THRESHOLD in FOOT LAMBERTS

10!

10

1o™*

p T=044

T=.044

BACKGROUND BRIGHTNESS I
I0°* FOOT LAMBERTS /o

=.53
T=.88
T=.73

LOOKING DOWNWARD POSITION T=.88

2 o o-

I 11 1 11118l 1 1
2 3 456789 | |

10° 10' 0! 10
DISTANCE in FEET

Fig. 21. RELATION BETWEEN THRESHOLD REQUIREMENTS FOR
EL-PANEL (SLANT RANGE) AND DISTANCE

41



THRESHOLD in FOOT LAMBERTS

10!

T

107

0"

i0-*

L O ®—

BACKGROUND BRIGHTNESS T-.044
10°4 FOOT LAMBERTS :
T=.2
LOOKING HORIZONTAL POSITION =22
i T-.88
kb, : | |
10° 10' 10* io* 10°

DISTANCE in FEET

Fig. 22. RELATION BETWEEN THRESHOLD REQUIREMENTS FOR

EL PANEL (SLANT RANGE) AND DISTANCE

42



THRESHOLD in FOOT LAMBERTS

10!

107t

10°?

1074

i F
| L
BACKGROUND BRIGHTNESS
104 FOOT LAMBERTS T=.044
T=.21
LOOKING UPWARD POSITION T1:83
Db T=.88
.
It
er
6 -
4r
2 -
| N 1 L. d1a1 L 4 1
2 3 456789 } t i
10° 10' io? 10 10*

DISTANCE in FEET

Fig. 23. RELATION BETWEEN THRESHOLD REQUIREMENTS FOR
EL-PANEL (SLANT RANGE) AND DISTANCE

43



THRESHOLD in FOQOT LAMBERTS

107! 1+

104 1}

10°°

T T T Y7y

&> oo —

Fig. 24.

BACKGROUND  BRIGHTNESS
I0"%* FOOT LAMBERTS

LOOKING DOWNWARD POSITION

A I

L
2 3 456769| I |
10' o* 10°
DISTANCE in FEET

RELATION BETWEEN THRESHOLD REQUIREMENTS FOR
EL-PANEL (SLANT RANGE) AND DISTANCE

44



FOOT LAMBERTS

THRESHOLD

T=-.044

T=.21

T2.53
T=.73
Y/ T-88

102 1k

BACKGROUND  BRIGHTNESS
I0°% FOOT LAMBERTS

LOOKING HORIZONTAL POSITION

3L

104 | ¢
107 1 -
8t
6—
4 -
2k
]0‘6 | 1 L\ 1 1223 1 1 1
2 3 456789 ] . | . 1
10° 10’ 10 10 10

DISTANCE in FEET

Fig. 25. RELATION BETWEEN THRESHOLD REQUIREMENTS FOR
EL-PANEL (SLANT RANGE) AND DISTANCE

45



in FOOT LAMBERTS

THRESHOLD

10~?

10

10°*

> O -
T T T YT

BACKGROUND BRIGHTNESS
10~® FOOT LAMBERTS

LOOKING UPWARD POSITION

140 ) !

Fig. 26. RELA

J S |
5 6769 i i
10' io? Tole
DISTANCE in FEET

TION BETWEEN THRESHOLD REQUIREMENTS FOR
EL-PANEL (SLANT RANGE) AND DISTANCE

16



Fig. 27. TARGET MOVING IN A STRAIGHT PATH AT
CONSTANT VELOCITY AND CONSTANT ALTITUDE

given: d,, altitude and angle #.

S1 = d, sin(#)

- Viap? - 52

alt

sin(g) = Hl_

{=5s (d ) solving for ¢ we have

wn(¢) = 25

alt Dis = 2.0Dcos ()
tan ({)

Dis = cos{(#) = D * 2.0

t = == Time that target is in the Detectable Range.
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duration (Bloch's Law) and that above a critical duration, t. the contrast 4 /1
itself, becomes constant.

Empirical results indicated that the critical time was from 0. 10 to 0.0316
seconds. Probabilities of detection of 0.5 and above have been selected for analysis
in this report. Furthermore, the surface light source is assumed to be a constant
"on'" source. Because of the range of probabilities of interest here, and because of
the relatively long time required for a "look, " the critical duration can be ignored
in these calculations.

Hufford (7) showed that as the visual angle of the field of view increased the
search time also increased. As the intensity of the light source increased, the
required search time decreased. Hufford's curves showed an interesting interaction,
in that if the light source increased in brightness, the search time could be held
fairly constant despite an increase in ficld of view. If the contrast is increased
greatly, e.g. by the use of extreme intensities, the effect of search area on search
time may be negligle. Hence, Equation (28)

At = K - (a)/A (28)

At = 0.1(A)/(AL/1)

where At = time interval for search in scconds.
A = area of visual view in linear search (degrees)
5 < A < 100 (degrees)
(AI/I)L = Probability level of contrast (Blackwells),

describes all of the relationships that Hufford (7) implied in his report. It has also
been suggested by Lawson (1) that for each 10 degrees of linear search a delay time
of approximately one second will occur. Table 6 shows the delay time (At) for two
probability levels 0.50 and 0.95 that Hufford reported in 1964 (7). Hufford's data
was obtained from two subjects viewing fields ranging from 20 to 200 minutes of
visual angle. These data are shown in black in Figure 28. The suggestion by
Lawson that for each 10 degrees of linear search a delay time of approximately

one second will occur is also shown in dashed lines in Figure 28 for 0.50 and 0.95
detection probability.
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TABLE 6

Relationship Between Area (A), Contrast (AI/I)L
and Delay Time (AT)

At Linear Search Contrast
Delay Time Area (A) Probability Level
(Seconds) (Degrees)
0.3 3 1.0 *)
1.0 10 1.0 (xx)
5.0 50 1.0 (%)
7.0 70 1.0 (%)
0.4 2 0.5 (*)
1.0 5 0.5
2.0 10 0.5
4.0 20 0.5

() agreement with Hufford's results
(xx) agreement with Lawson's results

Krendel and Wodinsky (8) also investigated search in an unstructured visual
field, with background luminance of 0.01, 0.1, 1.0 and 12.4 foot-lamberts. The
result implied that if detection probability is to increase for a fixed light source,
either the search area must decrease or the search time must increase. Further
analysis shows that if Lawson's suggestion is applied, for each 10 degrees of linear
search a delay time of approximately one second will occur; the width of the area
of linear search must decrease if the detection probability is to increase for a
fixed target (Table 7). This suggests that by increasing search time, a light source
can have the same detection probability as if it were in a smaller search area. It
implies that a light source must increase its intensity as the area of view becomes
larger if probability of detection is to remain the same. Hence, if it takes one
second to detect a light source in a search area 10 degrees square, then it will
take two seconds to detect the same light source in a search area 20 degrees square.
Therefore, depending upon the size of the search area, it becomes possible to set
probability levels for time required for search (Fig. 29).

By using the Krendel and Wodinsky graph on required time for detection versus

scarch area, Figure 29, it becomes possible to calculate the width of linear search.
Table 7 summarizes the width that is required for 0.5 and 0.75 probability level.
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TABLE 7

Detection Probability Levels Required
for Fixed Light Sources

Width of the Required

Area Square Probability Time Search Area
(Degrees) Level (Seconds) (Degrees)
11.244 0.5 2.0 5.622
16.867 0.5 3.0 5.6223
5.6217 0.75 3.0 1.8739
8.99 0.75 5.0 1.798

12.371 0.75 7.0 1.76728

Calculating the width of the required linear scarch arca shows that the width
is a constant for 0.5 and 0.75 probability.

Since, for every second that the observer is exposed to the target, the target
will either increase or decrease in size, and hence the probability of detection will
also increase or decrease depending upon the conditions. It becomes essential that
the probability levels be known for a fixed target. Equations (20), (23) and (24) from
the previous section on attenuation and scatter compute the inherent contrast of a
fixed target at a given distance required for detection. For example, the 10 x 2 inch
EL. panel will have a probability level of 0.50 at a distance of 1,063 feet with
background brightngss 1.0 x 10 ° foot-lamberts if the surface target brightness
level is 4.94 x 10 ° foot-lamberts, This brightness was computed by using Equation
(23) for the upward case. Since the background brightness is so small and the
brightness level is known (4.94 x 10'3 foot-lamberts)., we can calculate the 0. 60,
0.70, 0.80, etc., detection requirements for the EL. panel (Table 8). Definition
of contrast ratio:

where B is small and equal to e for low background luminance.
Therefore, Bg = Ce + ¢

in this particular case the contrast ratio is:
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.004936 - .00001
.00001

= 492,6

Since the relative contrast for 0.50 probability level is 4.92.6, we know that by
increasing the contrast level to 798.12 (or by a factor of 1.62 using Blackwell's
relative contrast curve (Fig. 30) we can increase the probability of detection to
0.90. This idea can be applied from another point of view. At what distance will
the EL. panel with 4,94 x 10 ° foot-lamberts brightness have 1.62 more contrast
brightness (A I/I)t than the required 0.50 threshold level? This can be solved

since the size is already taken into consideration, by dividing contrast by 1.62.
We are essentially dividing By = 4.936 x 1073 by 1.62. Since By, (background

brightness) is so small, and equal to € :

4.936 x 10>

o7 = 3.04691 x 10~ foot-lamberts

The threshold brightness in the curves (Fig. 31) shows that this corresponds to a
distance of 820.0 feet. Rechecking the calculation:

.0030469 - .00001

-00001 = 303.69

The required 0.50 probability level at 820 is 3.0469 x 10_3 foot-lamberts.

Therefore, the EL. panel with 4.936 x 10—3 foot-lamberts brightness will be 0.90
detectable at a range of 820.0 feet.

.004936 - .00001
.00001

= 492.6 = (303.69)X1.62)

The required 0.90 probability level at 820 feet is 4.936 x 1073 foot-lamberts.

The curves in Figure 30 show that for small background brightnesses this
method of calculating probability levels is accurate. Table 8 gives the probability
levels for the case just considered, and Figure 31 gives a graphical presentation
of case.
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TABLE 8

Probability Levels for an Approaching Target of
.4936 x 10”2 Foot-Lamberts at 1,063 Feet

Brightness 0.5 Probability Level Probability + Distance From Elapsed
of Target of EL. Panel Contrast Factor Observer Time
(Foot-Lambcrts) (Feet) ( Seconds)

4.93x 1073 1.234 x 1072 0.10 (0.40) 1,700 0.0
4,93 x 1073 .8226 x 1072 0.20 (0.60) 1, 400 2.205
4.93x 1073 .67616 x 1072 0.30 (0.73) 1,260 3.235
4.93x 1073 .57395 x 102 0.40 (0.86) 1,160 3.970
4,93 x 1073 .4936 x 1072 0.50 (1.0) 1,063 4.684
4.93x 1073 .429217 x 1072 0.60 (1.15) 1,010 5.074
4,93 x 1073 .37969 x 1072 0.70 (1.30) 930 5.662
4,93 x 1073 .34517 x 1072 0.80 (1.43) 900 5.882
4.93x 1073 .30469 x 1072 0.90 (1.62) 820 6.471
4.93x 1073 .263957 x 10”2 0.95 (1.87) 770 6.838
4.93x 1073 .2468 x 1072 0.99 (2.0) 740 7.059

Velocity 136 ft/sec.
Transmittance per mile looking upward with T = .88 lO'5 foot-lamberts

Let us assume that the observer is searching, in a linear search area of 10
degrees. What is the probability that detection will be accomplished by the time
the target is 900.0 feet from the aircraft, if the 10 x 2 inch EL. panel has
4.94 x 1073 foot-lamberts brightness in a 10”9 foot-lamberts background?

By use of Equation (28), it is possible to compute the time needed for detection
if detection is to occur. Table 9 gives a summary of the computations, starting
at 0.50 probability level. The probability rule that relates the time duration with
the level of detection is given below:

At = 0.1(10.)/0.50 = 2.0 sec.
(+1.0)
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TABLE 9

Time Required to Detect the Approaching Target in Figure 15

<A I/I) Time Above Area AtB
L and Below (Degrees) (Seconds)
0.50 +1.0 10.0 2.0
0.70 10.714 10.0 1.428
0.88 +0.568 10.0 1.1363

It takes two (2.0) seconds to search a linear area of lOO; one (1.0) second
above and below the 0.50 probability level. After a time interval of (+1) one second
on the x-axis, the target is now at the detectable level of 0.70, computing the time

required for detection at 0.70 probability level, which is 1.428 seconds. This means
that 0.714 seconds will be distributed above the 0.70 probability level. Displacing

the 0.70 probability level by 0.714 second, we reach the 0.88 probability level
(Table 9) of detection.

t = 0.1(10.)/(0 10) = 1.428

The mathematics to associate Table 9 with the probability rules is given below:

Let Pl = g the probability of detection on first look.
P, =1- € the probability of no detection on first look.
P2 = ) the probability of detection on second look.
P2 =1- €9 the probability of no detection on second look.
Pn = € the probability of detection on nth look.
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Hence, the probability that the target will be detected by time it gets to within
900 fcet of the observer is:

Plyg = € + (1-€)(ey) = P + (1P e,
Plyopz = ¢ + (Imed(ey) + 1-(e +(l-€) €y) e4

=P + (1-P

142 142) €3

P e, + (l"L) € T ooinn + 1-(el+(1-e1)e2 +

1+2+...n =

(1-(el+(1‘€l) (2)63 + . = P.l+...+n-l)fn

Assuming that the first look is at threshold (0.50) brightness and the second look is
at 0.70 probability of detection level.

P(detection) = € + (L. -¢)(¢y)
= 0.5 + (1. -0.5)(0.7)
= 0.5 + (0.5)(0.7)
= 0.5 + 0.35
P(detection) = 0.85 = 85% at 900 feet from target.

The probability can also be calculated for an example where three searches
arc required to detect the target:
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EXAMPLE:
P1 = € = .5

P2=62=.7

P = (.5) + (1-.9(.7) + (1 -(.5+(.5)(.7)(.8)

= 0.5 + (.5)(.7) + (1-.83)(.8)

= 0.3 + 0.35 + (0.15)(.8)

= 0.5 + 0.35 + .120

= 0.97

Therefore, the longer the length of run the higher the probability of detection.

It is also apparent that the larger the area of search the lower the probability of
detection. Thus, we have one method of approximating the integral under the

probability curve and considering both the length of time in view and the area of
search.
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SUMMARY

The analysis of visibility of a surface light must bring all the individual
factors together. The first consideration must be given to the surface light itself,
the shape and relative size in square minutes of arc. If the shape of the target
docs not approximate a circle on square in form, then the contrast threshold can
be computed by Lamar's useful flux method.

_ k
(al;) = CR/A
t

This computation is shown in section (b) of this report using Hardy's data on contrast
ratios for different subtended minutes of visual arc.

After the contrast threshold levels have been computed for variable shapes
and sizes, apparent contrast (C,), this input data is used to calculate the needed
inherent contrast requirements C,) for the variable conditions. Some of the
conditions to be considered are: (a) attenuation and scatter, (b) slant range,
(c) sky-ground ratios and (d) relative number of particles per unit volume atmosphere.
The equations used for this computation are (20), (23) and (24) by Duntley.

Now that the brightness levels for target detection are determined, further
predictions directly related to the unique environmental conditions for each case
must be investigated. How long will the target be in the visible range? How large
will the search area be? Scarch time (At) in relation to search area can be
associated using the equation:

At = k(A)/ (A I/I) (28)
L

thereby determining the cumulative probability of detection for a particular case.
Accuracy in integration of the area under the cumulative probability curve can be
increased by the use of appropriate weights, which, in effect, narrow the width of
the search time segments and smooth the detection probability approximations.
Thus, it becomes possible to associate a probability value with each case. This
analysis for a given surface light source can give a reasonably accurate prediction
of detection probability.
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APPENDIX A

PROGRAM TO COMPUTE LIGHT REQUIREMENTS

FOR TARGET DETECTION

A computer program was written to incorporate and interrelate the factors
developed in this study. The flow chart (Fig. 1A) illustrates the relationships
among factors developed in the previous sections.
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